Section 1.3

Some Basic Limits: Let *b* and *c* be real numbers, and let *n* be a positive integer.

1. $\lim_{x \to c} b = b$ 2. $\lim_{x \to c} x = c$ 3. $\lim_{x \to c} x^n = c^n$

Limits of Polynomial and Rational Functions: If *p* is a polynomial function and *c* is a real number, then $\lim_{x \to c} p(x) = p(c)$

If r is a rational function given by r(x) = p(x)/q(x) and c is a real number such that $q(c) \neq 0$, then $\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)}.$

Two Special Trigonometric Limits:

1.
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 2. $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$

- 1) Find the following limits:
 - a) $\lim_{x\to 2} 2x^2$
 - b) $\lim_{x\to -1}(3x^3-5x)$
 - c) $\lim_{x \to 4} \frac{3x+2}{5-2x}$
 - d) $\lim_{x\to 0} (3x^2 5x + 1)^5$
- 2) Find the following limits:
 - a) $\lim_{x \to 3} \sqrt{2x^2 3x}$
 - b) $\lim_{x\to -2} \sqrt[3]{-7-5x^2}$

- 3) Find the following limits:
 - a) $\lim_{x \to \frac{\pi}{3}} \cos 2x$

b)
$$\lim_{x \to \frac{3\pi}{4}} \tan^2 x$$

4) Find the following limits:

a)
$$\lim_{x \to 2} \frac{x^2 - 6x + 8}{x - 2}$$

b)
$$\lim_{x \to -1} \frac{x^3 + 1}{x + 1}$$

5) Find
$$\lim_{x \to 0} \frac{\sqrt{2x+4}-2}{3x}$$
.

6) Find
$$\lim_{x\to 0} x^2 \sin \frac{1}{x}$$
.

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: #19, 25, 36, 39, 43, 45, 49, 53, 63, 73, 83